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Abstract. A lower bound result about the approximability of the energy function of Ising
spin glasses in the quantum context is determined. The ground-state problem for the three-
dimensional Ising spin glasses represented on two-level grids such that the vertical interactions
are at most

√
n (wheren is the number of spins set on the grid), is considered. We prove that,

unless NP⊆ BQP, there is a constantα > 0 such that every quantum approximate polynomial-
time algorithm finds a solution with absolute error greater thanα

√
n, with high probability,

infinitely often.

1. Introduction

The study of spin glasses has become of great interest both in solid state physics and in
statistical physics. The prototype of a spin glass is a dilute magnetic alloy, for example 1%
of magnetic impurities, Mn or Fe, embedded in Cu or Au.

We are concerned with the determination of the ground-state values which minimize the
energy function of these disordered systems for which no satisfactory answers have been
found.

Bieche et al [1] studied the problem for an Ising spin glass represented on a planar
lattice and described by the frustration model, for which the spin interactions assume only
two symmetrical values,±J . They provided the exact solutions in polynomial time by
using Edmonds’ algorithm for the minimum perfect matching problem.

Later, under the conjecture P6= NP, Barahona [2] proved that there is no polynomial-
time algorithm that finds the minimum values of the energy function of a three-dimensional
Ising spin glass with nearest-neighbour interactions chosen randomly from the set{−1, 0, 1}.
This result forces us to look for algorithms that determine approximate solutions in a
polynomial amount of computing time, since correct solutions need super-polynomial time.

Let us consider the simple three-dimensional spin glass model used by Barahona, which
is represented by a two-level finite grid whose nodes correspond to the spins and whose
edges denote the interactions between nearest-neighbour spins. In particular we consider
two-level squared grids(V̂ , Ê) with a fixed number of vertical interactions. Each grid is
a graph(V ,E) such that the set of nodes isV = {1, . . . , k} × {1, . . . , k} × {1, 2}, for a
suitablek, E contains edges whose nodes differ by a component, and the vertical edges
{(x, y,1), (x, y,2)} are at most

√
n, if n = 2k2 is the cardinality ofV . Moreover, if we

associate with each nodei ∈ V̂ a variableσi ∈ {−1, 1}, representing the spin orientation,
and with each edge{i, j} ∈ Ê a weightJij ∈ {−1, 0, 1}, indicating the interaction between
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nearest-neighbour spins, we obtain a weighted gridĜ = (V̂ , Ê, J ). Let G be the class of
the weighted grids just described. The energy of a spin configuration is obtained by the
Hamiltonian functionHĜ : {−1, 1}n → Z defined for anyσ = [σ1, . . . , σn] ∈ {−1, 1}n by
the law

HĜ(σ ) = −
∑
{i,j}∈Ê

Jij σiσj .

The ground-statesof our Ising spin glass model are the configurationsσ which minimize
the functionHĜ(σ ).

The results provided by Bertoniet al [3] refer to grids in the classG. Let n be the
number of spins set on the grid; with respect to computation of the ground-states of such a
system, they proved that:

(i) there is an approximate polynomial-time algorithm with absolute error less than
√
n;

(ii) if P 6= NP, there exists a positive constantα such that every approximate polynomial-
time algorithm has an absolute error greater thanα

√
n, infinitely often.

In this study, we will prove that, under the conjecture NP6⊆ BQP, there exists a constant
α > 0 such that every quantum approximate polynomial-time algorithm determines, with a
probability of error at most 1/4, a solution with absolute error greater thanα

√
n, infinitely

often (if n is the number of spins on the grid).

2. Preliminary notions of complexity theory

We introduce some basic notions about computational complexity that we will use to state
our results.

A decision problem5 can be described as a set of instancesD5 and a subsetY5 ⊆ D5

of instances which give a positive answer. Let6 be a finite alphabet and6∗ the set of
all words on6; by means of a suitable encoding scheme, a decision problem5 can be
represented as alanguageL ⊂ 6∗, that is a set of words which codify the instances of
Y5. A natural measure of the ‘size’ of an instance is the length of the corresponding word
represented by the number of symbols composing it.

Turing machines are devices normally used to solve problems (or to recognize languages)
consuming computational resources, such as time or space. Usually, a problem is considered
‘practically solvable’ if there is a Turing machine which finds a correct solution by using an
amount of time bounded by a polynomial in the size of the input; the class of such problems
is denoted by P [4].

The use of randomized algorithms [5] seems to improve the computational power. If
BPP represents the class of problems solvable in polynomial time by probabilistic Turing
machines with error probability smaller than 1/4, it is conjectured that there are problems
in BPP which are not contained in P, even if no formal proofs have still been founded.

Furthermore, Feynman [6] suggested that a quantum device might potentially be more
powerful than a deterministic or randomized Turing machine. This assumption was based
on the impossibility for classical devices to simulate the quantum situations without an
exponential slowdown.

Feynman’s hypothesis is supported by precise results; for example, in 1994 Shor [7] built
an algorithm for quantum Turing machines that solves efficiently the integer factorization
problem, whereas it seems that no classical device is able to find a correct solution in
polynomial time.

Deutsch [8] gave the first formal description of a quantum Turing machine and we
assume the definition contained in [9].
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Definition 2.1. A quantum Turing machine (QTM) consists of a finite state setQ, a finite
alphabet6 and a quantum finite-state control

δ:Q×6 ×6 ×Q× {L,R} → C

where, for any(p, σ, τ, q, d) ∈ Q×6×6×Q×{L,R}, the complex numberδ(p, σ, τ, q, d)
represents theamplitudewith which the machine in statep readingσ will write τ , enter
stateq and move in directiond.

The configuration spaceof a classical Turing machine is the following set

� = Q×6∗ ×6 ×6∗
whereQ is the finite state set of the machine and6∗ × 6 × 6∗ represents the possible
contents of the tape. At any instant the configuration of the machine is an element of a
countably infinite set� and it can be rewritten as

� = {Si}i∈N
following a suitable numeration.

The QTM is, by definition, a quantum mechanical system; we know that the
configuration space of a quantum mechanical system is represented by a Hilbert space.
What we are looking for, is a Hilbert space capable of containing a countably infinite
orthonormal basis that can be put in correspondence with the set�.

If H is a complex separable Hilbert space andB ⊆ H is a (countably infinite)
orthonormal basis ofH, following Dirac notation, we will denote by|·〉 : � 7→ B the
searched bijection andB = {|Si〉}i∈N is called thecomputational basis[8]. Each unitary
elementψ of H represents a possible configuration of the QTM and it can be written as a
linear combination of elements of the computational basis

ψ =
∑
i∈N

ai |Si〉

whereai = 〈ψ |Si〉 are theFourier coefficentsof ψ relative to the chosen computational
basis. In the quantum computational context, eachai is called theamplitudeof ψ relative
to the configurationSi .

According to the laws of quantum mechanics, the machine transition operatorUδ
(induced by the finite state controlδ), is a unitary operator in the spaceH. The computation
of the QTM is the sequence of configurations obtained by the subsequent application of the
operatorUδ to the configuration of the machine, starting from an initial configuration.

From a more practical point of view, in general people consider a finite-dimensional
Hilbert spaceH. If n is the dimension ofH, the basis isB = {S1, . . . , Sn}. Then, in this
context, the unitary operator is represented by a square matrix of ordern. At a chosen
instant, the machine is measured by a suitable observableO, whose spectral representation
is just expressed through the fixed basis as follows

O =
k∑
i=1

λi |Si〉〈Si | (k 6 n).

This operation provides the following statistical result: let us suppose that the final
configuration of the machine isψ f ; then, the probability that the system, measured by
the observableO, produces the valueSi (meaning that the machine now occupies the state
|Si〉) is given by

|af
i |2 = |〈ψ f |Si〉|2.
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In general, a setS ⊂ � of configurations is fixed, each representing a successful
computation; in this case, the probability of reaching a successful final configuration, through
the observableO, is∑

Si∈S
|〈ψ f |Si |2〉|.

Bennett [10] and, later, Yao [11] have provided some results that are useful in the
construction of quantum algorithms:

(i) a deterministic computation is performable on a quantum machine if and only if it
is reversible;

(ii) any polynomial size unitary matrix can be approximated using a polynomial number
of elementary unitary transformations; this means that it can be approximated on a quantum
machine in polynomial time.

The previous definition of a quantum Turing machine suggests the natural introduction
of the following complexity class.

Definition 2.2. [9]: BQP is the class of languages that are accepted by a polynomial-time
quantum Turing machine with error probability at most 1/4.

As far as the defined complexity classes, it is conjectured that P⊂ BPP⊂ BQP.
Unfortunately, many problems, of interest from a practical point of view, do not seem

to be solvable in polynomial time. An important class involving them is the class of
NP-completeproblems. NP is the class of problems solvable in polynomial time by a non-
deterministic Turing machine [4]; obviously P⊆ NP and it is conjectured that P6= NP.
Likewise, it is improbable that NP⊆ BQP, even if no proof is available.

Intuitively the NP-complete problems are ‘the most difficult’ in the class NP, in the
sense that building a polynomial-time algorithm solving one of them, would imply that
P = NP. We are interested in this kind of problem because the decision version of the
ground-state problem is NP-complete [2].

In this study we accept the conjecture that NP6⊆ BQP and therefore that NP-complete
problems cannot be solvable in polynomial time by any quantum Turing machine.

3. Combinatorial optimization problems and their approximability

First of all, we introduce some formal notions about combinatorial optimization theory.

Definition 3.1. [12]: An optimization problem5 is defined by the tuple〈In5,Sol, ω,opt〉
such that:

(i) In5 represents the set of the instances of5;
(ii) given an instanceI ∈ In5, Sol(I ) denotes the set of its feasible solutions; this set is

recognizable in polynomial time and there is a polynomialp such that for anyS ∈ Sol(I ),
|S| 6 p(|I |);

(iii) ω is the objective functionthat associates a non-negative rational numberω(I, S)

(thesolution value) to any couple(S, I ); in the sequel, given the instanceI , we will denote
ω∗(I ) as the measure of an optimum solution of the problem5;

(iv) opt ∈ {max,min} explains if5 is a maximization or a minimization problem.
As an example, a well-known optimization problem is MAX 3SAT [12]:
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• MAX 3SAT
Instance: A set V of Boolean variables, a collectionC of clauses overV such that each
of them has three literals at most.
Solution: A truth assignment to the variables inV .
Solution value: The number of satisfied clauses.
Opt: Max.

Combinatorial optimization problems admit a natural version as decision problems (i.e.
problems with ayes–noanswer); here we give two examples:

• MAX CUT-3
Instance: A graphG = (V ,E) of degreeD 6 3 and an integerk.
Question: Is there a subsetV1 ⊆ V such that the cardinality of cut(V1) is greater thank,
where cut(V1) is the set of edges with one endpoint inV1 and the other one inV − V1?

• MAX {−1, 0, 1}-CUT
Instance: A weighted gridĜ = (V̂ , Ê, J ) ∈ G and an integerk.
Question: Is there a subset̂V1 ⊆ V̂ such that the weightW(cut(V̂1)) is greater thank,
whereW(cut(V̂1)) =

∑
{i,j}∈cut(V̂1)

Jij?

The ground-state problem may be stated as a minimization problem in the following
way:

• GROUNDSTATE (GS)
Instance: A weighted gridĜ = (V̂ , Ê, J ) ∈ G.
Question: Find a configuration of spinsσ = [σ1, . . . , σn] that minimizes the expression

HĜ(σ ) = −
∑
{i,j}∈Ê

Jij σiσj .

If the decision version of an optimization problem is NP-complete, then it is impossible
to obtain the solution in polynomial time, unless P= NP. Nevertheless, we can hope to
find a ‘good approximate’ solution by means of a polynomial-time ‘approximate’ algorithm.

Two measures of the quality of a solution result from the absolute and relative error.

Definition 3.2. Given an optimization problem5, an instanceI ∈ In5 and a solution
S ∈ Sol(I ), the absolute errorE(I, S) and therelative error Err(I, S) are respectively

E(I, S) = |ω∗(I )− ω(I, S)| Err(I, S) = |ω∗(I )− ω(I, S)|
max{ω∗(I ), ω(I, S)} .

Remark 1. There exists a relation between the ground-state problem and MAX{−1, 0, 1}-
CUT based on the absolute error for an approximate algorithm applied to the instances of
the two problems.

Let Ĝ = (V̂ , Ê, J ) be an instance of GS,(V̂ , Ê,−J ) the instance of MAX{−1, 0, 1}-
CUT andA an approximate polynomial-time algorithm. This algorithm will determine a
configurationσ0 for GS and a subset̂V1 ⊆ V̂ for MAX {−1, 0, 1}-CUT. Then it is possible
to express a relation between the energyHĜ(σ0) of the system in the configurationσ0 and
the maximum weightW of cut(V̂1) in this way

HĜ(σ0) = −
∑
{i,j}∈Ê

Jij − 2W
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that is

W = 1

2

(
−

∑
{i,j}∈Ê

Jij −HĜ(σ0)

)
.

Through these expressions, it is easy to verify that an approximate polynomial-time
algorithm for GS with absolute errorE is an approximate polynomial-time algorithm for
MAX {−1, 0, 1}-CUT with absolute errorE/2 and vice versa.

The notion of a polynomial-time approximation scheme ensures that we will find
‘arbitrarily good’ approximate solutions in polynomial time.

Definition 3.3. An optimization problem5 admits a polynomial-time approximation
scheme(PTAS) if, for everyε > 0, there exists an approximate polynomial-time algorithm
Aε such that, for every instanceI , the solutionAε(I) satisfies the following relation

Err(I, Aε(I )) 6 ε.
The class of problems that admit a polynomial-time algorithm with error smaller than one

is called SNP [13]. The ‘most difficult to solve’ problems in SNP are said SNP-complete(for
a formal definition see [13]); here ‘most difficult’ means that, if an SNP-complete problem
admits a PTAS, the same holds for any problem in SNP. Two well-known SNP-complete
problems are MAX 3SAT and MAX CUT-3.

An important result in this area shows that SNP-complete problems do not admit a
PTAS.

Theorem 3.1. [14]: If P 6= NP, MAX 3SAT does not admit a PTAS.

Maximization problems in SNP are called MAX SNP problems. From theorem 3.1, it
follows that MAX SNP-complete problems are not solvable by any PTAS [13].

Now we discuss the combinatorial optimization notions from a quantum point of view.

Definition 3.4. Let 5 be an optimization problem andA a quantum approximate
polynomial-time algorithm. Theabsolute errorassociated withA is smaller thanE(n)
if, with probability at least 3/4, on input of sizen, A outputs an approximate solution with
absolute error less thanE(n). Likewise,A has relative error less thanε > 0 if, for any
I ∈ In5 ∑

Err(I,S)6ε
|λI,|S〉|2 > 3

4

where S ∈ Sol(I ) and λI,|S〉 represents the amplitude associated with the quantum
computation that givesS as output whenI is the input.

Definition 3.5. An optimization problem5 is solvable by aquantum polynomial-time
approximation scheme(QPTAS) if, for everyε > 0, there exists a quantum approximate
polynomial-time algorithmAε that, for any instanceI ∈ In5, finds a solutionS with relative
error smaller thanε.

Through the notion of PTAS, we can state the following proposition, since it already
holds in the classical context.

Proposition 3.1. Let5 be an optimization problem that belongs to the class MAX SNP. If
5 admits no QPTAS, then any MAX SNP-complete problem is not solvable by any QPTAS.
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4. Results

In this section we consider Ising spin glasses represented on two-level weighted grids from
the classG. We prove a lower bound result about the approximability of the energy function
of such physical systems by using the quantum notions of computational complexity and
the optimization combinatorial theory. Since this result is a lower bound result, it holds for
more general spin glass models. In this context the hypothesis P6= NP is replaced by the
conjecture NP6⊆ BQP.

The first step towards obtaining our results consists in proving the following theorem.

Theorem 4.1. Let us consider an NP-complete problem5 and a reduction to the problem
MAX 3SAT, f : In5→ InMAX 3SAT. Let us suppose that

ω∗(f (I )) =
{
c if I ∈ Y5
(1− g)c if I /∈ Y5

whereg < 1 is a positive constant andc is the number of clauses inf (I). Then, if NP 6⊆
BQP, MAX 3SAT does not admit a QPTAS.

Proof. Let us suppose that MAX 3SAT is solvable by a QPTAS; then we denote byAg/3
the quantum approximate polynomial-time algorithm that finds an approximate solution for
the problem MAX 3SAT with relative error less thanε = g/3 (with 3/4 confidence level).
Let us consider the following algorithm:

AlgorithmB5:
input: An instanceI ∈ In5;

(1) computef (I);
(2) determine a solutionS with probability |λf (I),|S〉|2 by applyingAg/3 to f (I);
(3) if ω(f (I), S) > (1− g/3)

then output ‘yes’,
else output ‘no’.

B5 is a quantum approximate polynomial-time algorithm that solves5; in fact: when
I ∈ Y5, Bg/3 outputs ‘yes” with probability at least 3/4, since, with the same probability,
it holds that

|ω(f (I), S)− c| 6 cg/3
that is

ω(f (I), S) > c(1− g/3).
On the other hand, whenI /∈ Y5, with probability greater than 3/4,Bg/3 outputs ‘no’ since

ω(f (I), S) 6 ω∗(f (I )) = c(1− g) < c(1− g/3).
Since5 is NP-complete, that implies NP⊆ BQP. �

As MAX 3SAT belongs to the class MAX SNP, from the just proved theorem and from
proposition 3.1, a property about MAX SNP-complete problems is derived.

Theorem 4.2. If NP 6⊆ BQP, MAX SNP-complete problems are not solvable by any
QPTAS.
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Now we consider the MAX CUT problem for which instances are connected graphs.

Theorem 4.3. If NP 6⊆ BQP, MAX CUT restricted to connected graphs does not admit
any QPTAS.

Proof. Let Aε be the quantum approximate polynomial-time algorithm for MAX CUT
restricted to connected graphs with relative errorε. Consider the following algorithm.

AlgorithmBε:
input: An arbitrary graphG = (V ,E) (let |V | = n);

(1) determine the connected componentsG1 = (V1, E1), . . . ,Gl = (Vl, El) of G;
(2) for i = 1, . . . , l do find s = dlogne solutionsW1i , . . . ,Wsi by applyings timesAε

to the connected componentGi ; let Wi be the element in{W1i , . . . ,Wsi} with maximum
cut;
output: W = W1 ∪ · · · ∪Wl .

Bε is a quantum approximate polynomial-time algorithm for MAX CUT. In fact the
time complexity ofBε is bounded by the quantity lognlPε, wherePε is the time complexity
of Aε and l is the number of connected components of the input.

Moreover it holds that:
∑

Err(G,W)6ε |λG,|W 〉|2 > 3
4. With regard to this fact, we first

observe that Err(Gi,Wi) 6 ε for all i implies that Err(G,W) 6 ε. Hence∑
Err(G,W)6ε

|λG,|W 〉|2 >
∑

∧li=1Err(Gi ,Wi)6ε
|λG,|W1〉,...,|Wl〉|2.

Because of the independent applications of the algorithmAε to the connected components,
we obtain∑
∧li=1Err(Gi ,Wi)6ε

|λG,|W1〉,...,|Wl〉|2 =
∑

∧li=1Err(Gi ,Wi)6ε
|λG1,|W1〉|2 · · · |λGl,|Wl〉|2

=
l∏
i=1

(
1−

s∏
k=1

∑
Err(Gi ,Wki )>ε

|λGi,|Wki 〉|2
)

>
(

1−
(

1

4

)s )l
>
(

1−
(

1

4

)s )n
> 3

4
.

In this way we have built the QPTAS{Bε} that solves the MAX CUT problem. As
MAX CUT is a MAX SNP-complete problem, we have proved a result in contradiction
with theorem 4.2. �

The theorem just demonstrated is true even when we deal with graphs of degree at most
three, since the decision version of the MAX CUT problem for graphs with degree at most
three is still NP-complete.

Corollary 1. If NP 6⊆ BQP, there exists no QPTAS that solves MAX CUT for which
instances are connected graphs of degree at most three.

Finally, we state our main result. If̂G is a grid in the classG andA is a quantum
approximate polynomial-time algorithm, we will indicate byH(A(Ĝ)) the energy of the
spin glass in the configuration determined byA and withH ∗(Ĝ) the minimum energy of
the system.
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Theorem 4.4. If NP 6⊆ BQP, there exists a positive constantα such that, for every quantum
approximate polynomial-time algorithmA, there are infinitely many gridŝG = (V̂ , Ê, J )
in the classG that satisfy the following relation∑

|H ∗(Ĝ)−H(A(Ĝ))|>α
√
|V̂ |
|λĜ,|A(Ĝ)〉|2 >

3

4
.

Proof. In contradiction to this thesis, let us suppose that for every constantα > 0 there
exists a quantum approximate polynomial-timeAα such that∑

|H ∗(Ĝ)−H(Aα(Ĝ))|<α
√
|V̂ |
|λĜ,|Aα(Ĝ)〉|2 >

3

4

but for a finite number of gridsĜ from the classG. In [3] it is proved that there is a
polynomial-time computable functionf that associates with every instanceG = (V ,E) of
MAX CUT-3 the instancef (G) = (V̂ , Ê, J ) of MAX {−1, 0, 1}-CUT such that

ω∗(G) = W ∗(f (G))
whereω∗ andW ∗ are the values of the best solutions of MAX CUT-3 and MAX{−1, 0, 1}-
CUT respectively. Besides, there exists another polynomial-time computable functiong

that assigns to every instanceG = (V ,E) of MAX CUT-3 and to every feasible solution
Ŝ ∈ Sol(f (G)) of MAX {−1, 0, 1}-CUT a solutiong(Ŝ) ∈ Sol(G) such that

W(f (G), S) 6 ω(G, g(Ŝ)).
Consider the following algorithm.

Algorithm Āα:
input: A graphG = (V ,E) of degreeD 6 3

(1) Determine the weighted gridf (G) = (V̂ , Ê, J )
(2) Apply Aα to the weighted gridĜ = (V̂ , Ê,−J )

output: g(Aα(Ĝ)) = Āα(G).

From remark 1 and from the relation between MAX{−1, 0, 1}-CUT and MAX CUT-3

|ω∗(G)− ω(Āα(G))| 6 |H ∗(Ĝ)−H(Aα(Ĝ))| < α

√
|V̂ |.

Therefore, the relative error̄Aα verifies

|ω∗(G)− ω(Āα(G))|
ω∗(G)

6 |H
∗(Ĝ)−H(Aα(Ĝ))|

ω∗(G)
<
α

√
|V̂ |

ω∗(G)
.

A construction provided by Barahona [2] allows one to embed a graph(V ,E) of degree
D 6 3 into a two-level squared grid(V̂ , Ê) such that|V̂ | = 18|V |2. Recalling that the
cardinality of the maximum cut for a connected graph is|V | − 1 at least, we have

Err(G, Āα(G)) <
α

√
|V̂ |

ω∗(G)
<
α

√
|V̂ |
|V | = α

√
18.

We can conclude that∑
Err(G,Āα(G))<α

√
18

|λG,|Āα(G)〉|2 >
∑

|H ∗(Ĝ)−H(Aα(Ĝ))|<α
√
|V̂ |
|λĜ,|H(Aα(Ĝ))〉|2 >

3

4
.
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The quantum polynomial-time approximation scheme{Āα} solves the MAX CUT-3 problem
restricted to connected graphs, in contradiction with corollary 1.

This lower bound result proves that, under the conjecture NP6⊆ BQP, algorithms for
quantum Turing machines do not improve the classical approximation of the energy function
for three-dimensional Ising spin glasses.

5. Conclusions

We can summarize the computational complexity results about the ground-state problem for
a three-dimensional Ising spin glass represented on a two-level grid such that, ifn is the
number of spins set on the grid, the vertical interactions are at most

√
n.

Barahona proved that GS is an NP-complete problem. This means that, if P6= NP, it
is not possible to build a polynomial-time algorithm which finds the correct solution.

Besides, we have verified a difficulty in finding good approximate algorithms. In the
deterministic case, Bertoni, Campadelli and Molteni have determined a lower bound for the
absolute error of any approximate polynomial-time algorithm, unless P= NP. In this study,
under the conjecture NP6⊆ BQP, we have proved that quantum Turing machines are not
sufficient to improve the lower bound result�(

√
n).

It would be interesting to look for good approximate algorithms for more general models,
for instance when the number of vertical interactions is not bounded or when there are
connections among spins which are not necessarily nearest neighbours.
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